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1.0  Background 
 

Sixty-five  million  people  around  the  world  have  epilepsy. In  the  United  States, 1  in  26 

people  will  develop  epilepsy at some  point in  their life. Epilepsy is a  condition  characterized  by 

disturbances in  the  electrical  activity in  the  brain, resulting  in  a  seizure. Symptoms of a  seizure 

can  range  from a  minor space  out (absence  seizure) to  severe  convulsions (tonic-clonic 

seizures).  Typically, epilepsy is diagnosed  in  a  person  who  has had  two  or more  seizures, or 

had  one  seizure  with  a  high  risk for future  episodes. Types of seizures are  classified  by where 

they begin  in  the  brain. Focal  onset seizures originate  in  a  group  of cells in  one  side  of the  brain. 

Generalized  onset seizures originate  in  groups of cells in  both  sides of the  brain. Types of 

generalized  onset seizures include  tonic-clonic (also  known  as “convulsive”), absence, and 

atonic. Treatments for epilepsy include  seizure  medication, devices, surgery, and  dietary 

therapy. These  treatments have  proven  to  be  effective  in  many, but not all, epileptic individuals. 

For 1  in  3  people  with  epilepsy, there  is currently no  available  treatment that controls their 

seizures. In  rare  instances, epilepsy can  even  lead  to  death  [1]. 

Sudden  Unexpected  Death  in  Epilepsy (SUDEP) is believed  to  be  the  leading  cause  of 

epilepsy-related  deaths, affecting  1  in  1000  people  with  epilepsy. SUDEP is cited  as the  cause 

of death  in  an  epileptic person  when  no  other cause  of death  is found. For this reason, most 

cases of SUDEP are  not diagnosed  in  individuals until  an  autopsy is performed. Although  the 

specific causes of SUDEP are  relatively unknown, several  potential  risk factors have  been 

identified. People  who  experience  generalized  tonic-clonic seizures are  at the  highest risk for 

SUDEP. Other risk factors include, but are  not limited  to, abrupt changes in  medication, 

excessive  drinking, using  illegal  substances, having  epilepsy for more  than  15  years, and  having 

seizures during  sleep  [1]. 
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Although  very little  is known  about the  causes of SUDEP, experts in  the  medical 

community generally agree  that the  incidence  of SUDEP can  be  reduced  through  improved 

early detection  methods and  monitoring  of patients when  they are  about to  have  or are  actively 

suffering  from a  seizure  [2].  

 
2.0  Clinical Need 
 

There  is a  need  to  alert individuals who  are  at high  risk for seizure  during  sleep  to  an 

impending  epileptic event to  decrease  the  frequency of Sudden  Unexpected  Death  in  Epilepsy 

(SUDEP).  

 
3.0  Project Scope 
 

This project proposes to  deliver a  safe, comfortable, and  easy to  use  device  that can  be 

worn  overnight. It will  use  available  physiological  data  to  accurately predict an  impending 

seizure, and  will  alert the  user and  emergency medical  services a  short time  (on  the  order of 

minutes) before  the  seizure  begins. The  proposed  device  will  be  delivered  to  Dr. David 

Lardizabal  and  the  BME 401  instructors, including  the  necessary software  for seizure  prediction 

and  a  user manual  for safe  operation  by the  end  of April  2018. 

 
4.0  Existing Solutions 
 
4.1  Commonly  Used Methods  for  Seizure  Detection 
 

The  primary methods used  for seizure  detection  currently are  wristbands/watches, cell 

phones, and  mattress sensors. All  of these  methods rely primarily on  accelerometry to  detect 

active  seizures and  some  use  additional  signals such  as pulse  or electrodermal  activity. Many of 

these  devices are  also  capable  of alerting  a  caregiver if an  active  seizure  is occurring. One 

device  on  the  market that is commonly used  is the  Embrace  wristband  by Empatica  (shown  in 
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Figure  1). This wristband  uses an  accelerometer, a  gyroscope, an  electrodermal  activity sensor, 

and  a  peripheral  temperature  sensor to  detect an  ongoing  seizure. When  an  event is detected, 

the  wristband  uses a  bluetooth  connection  to  a  phone  to  alert preprogrammed  caregivers so 

that the  patient can  get the  help  they need  [3]. While  this is an  effective  tool  that is easy to  use, 

there  are  a  wide  array of activities that could  produce  the  same  signals as a  seizure  using  this 

method  and  could  lead  to  false  alarms. It is also 

unlikely that this wristband  is being  worn  during 

sleep  and  therefore  is unable  to  make  detections 

during  that time. Additionally, this device  cannot 

predict a  seizure  before  it happens and  is 

therefore  putting  the  patient at greater risk for 

SUDEP. See  more  existing  devices in  Appendix B. 

Other methods that have  been  used  to  detect seizures include  video  detection, audio 

classification, and  seizure  alert dogs. While  these  methods are  all  effective  in  certain  instances, 

they all  have  severe  limitations. Video  detection  is limited  by what can  be  seen  by the  camera 

and  have  a  limited  view. Similarly, audio  classification  requires that a  microphone  is listening  at 

all  times and  will  be  impeded  by any background  noise. Seizure  alert dogs are  commonly used 

for many seizure  patients, but are  only valuable  as long  as the  dog  is awake, alert, and  watching 

the  patient. This means that they are  not able  to  assist while  they are  asleep. Research  that has 

explored  these  possible  solutions is described  in  Appendix C. 
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4.2  EEG and ECoG Based Seizure  Detection and Prediction 
  

The  majority of the  research  that has been  performed  with  the  goal  of accurate  detection 

and  prediction  of seizures has been  done  using  electroencephalography (EEG) and 

electrocorticography (ECoG). Because  the  cause  of a  seizure  is sudden  and  disorganized 

electrical  activity in  the  brain, collecting  data  on  brain  signals is an  effective  method  of 

determining  if an  individual  is about to  have  or is currently having  a  seizure. It is common  to 

apply a  machine  learning  method  in  these  experiments as shown  in  Figure  2  [4].  

This process begins by 

collecting  data  from the  patient which  is 

then  processed  using  a  feature 

extraction  algorithm. These  algorithms 

extract meaningful  pieces of 

information  from the  ECG or ECoG 

signal, called  features. Feature 

computation  occurs in  three  steps: 

preprocessing, feature  computation, and 

feature  reduction. Preprocessing  is often 

used  to  convert the  signal  into  another form 

that may be  easier to  manipulate  or may involve  removing  segments of data  that are  not usable. 

The  features are  then  computed  from the  signal  using  methods that depend  on  both  the  signal 

type  and  features being  computed. Commonly used  feature  extraction  algorithms include 

Fourier analysis, wavelet transformations, and  principal  component analysis. Finally, with 

feature  reduction, the  available  features are  combined  using  either feature  selection  (choosing 

the  most meaningful  subset of the  computed  features) or feature  extraction  (compressing  the 
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information  in  the  computed  features into  fewer features). Some  of the  features that were  used 

in  the  identified  studies include  mean, correlation  dimension, power, etc. This data  is then  used 

to  determine  if the  patient is ictal  (having  a  seizure) or preictal  (about to  have  a  seizure) using  a 

machine  learning  classifier. The  classifier is trained  using  a  portion  of the  available  data  that is 

known  to  be  collected  during  an  ictal, pre-ictal, or interictal  (normal) period. The  trained  classifier 

can  then  be  tested  on  new signals to  determine  the  state  of the  patient at the  time  the  data  was 

collected  [5].  

Several  researchers using  this method  have  produced  accurate  classifiers, however, 

they are  dependent on  EEG data  which  is difficult to  collect outside  of a  lab  or medical  setting. 

Patients are  not able  to  sleep  with  EEG electrodes on, and  often  these  are  not tolerated  well  for 

long  periods of time. An  intracranial  EEG would  eliminate  this problem, but would  require  the 

patient to  undergo  an  arduous surgery process to  have  the  electrodes inserted.  

Most research  into  these  techniques has not involved  real-time  prediction, but rather has 

used  data  from past seizures to  construct a  classifier that is tested  on  other EEG/ECoG data 

that has already been  collected. Appendices C and  D technology that has been  developed 

using  this technique. Many of these  classifiers are  able  to  achieve  a  sensitivity above  90% [5]. 

One  example  of this is the  work done  by D’Alessandro  et al. in  2005  to  produce  a  probabilistic 

neural  network classifier. In  this study, data  was collected  using  8  intracranial  EEG channels. 

Among  25,872  possible  features computed  among  the  8  electrodes, a  reduced  search  space  of 

800  electrodes was used. The  classifier was trained  using  4  hours of baseline  data  and  10 

minutes of preictal  data  for the  first 4  clinical  seizures. This classifier was able  to  predict 100% 

of seizures up  to  10  minutes before  they occurred  with  a  false  positive  rate  of 1.1/hour [6]. While 

this data  is effective  for predicting  seizures within  a  helpful  timeframe, it is only able  to  do  so 

after the  seizure  has occurred  and  was not tested  using  a  real  time  application.  
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4.3  Seizure  Detection Using Non-EEG Signals 
 

While  most research  uses EEG and  ECoG, 

there  has been  exploration  into  the  use  of other 

signals, such  as ECG. Teixeira  et al. developed  a 

software  package, EPILAB, that provides 

researchers with  a  simple  user interface  for 

efficiently analyzing  long  term EEG and  ECG data  in 

the  context of seizure  prediction. EPILAB can  construct 

classifiers of various types using  over 35  univariate  and  multivariate  features from both  EEG 

and  ECG data. It uses these  classifiers to  determine  if the  subject is in  an  interictal, preictal, 

ictal, or postictal  state. A variety of user settings allow flexibility with  respect to  feature  extraction 

and  analysis, classifier training, and  prediction  [7]. Figure  3  shows a  sample  time  series output 

of using  the  software, showing  that it was able  to  successfully identify the  preictal  period. 

 
4.4  Real-time  Seizure  Prediction 
 

It should  also  be  noted  that most current research  analyzes data  after the  seizure  has 

occurred, rather than  in  real  time. Cook et al., however, did  perform one  such  experiment and 

demonstrated  successful  real-time  seizure  prediction. In  this study, 15  patients were  implanted 

with  an  intracranial  EEG advisory system. These  patients then  underwent a  1  month  advisory 

period  during  which  data  was recorded  and  used  to  construct an  individualized  prediction 

algorithm for each  patient. Patients then  entered  a  3  month  advisory phase  and  were  given 

warning  of an  impending  seizure  with  lights that indicated  low, moderate, and  high  likelihood. 

The  system was able  to  predict seizures with  sensitivities ranging  from 65-100% with  no 

significant deterioration  in  effectiveness over time  [8]. 
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4.5  Patents  and Related Technology 
 

There  are  a  number of patents that describe  technology similar to  those  described 

above. One  patent published  by Leyde  and  Dilorenzo  in  2007  broadly outlines this method  of 

determining  a  patient’s neurological  state  by collecting  EEG data, analyzing  the  signal  using  a 

machine  learning  process and  predicting  the  likelihood  of a  patient having  a  seizure  [9]. There  is 

also  a  series of patents that describe  standard  seizure  detection  methods such  as those  that 

can  be  placed  under a  mattress or can  be  worn  on  the  patient’s wrist [10]. 

There  is also  a  significant amount of overlap  in  the  technology 

used  to  detect seizures as the  technology used  to  detect sleep  apnea. 

There  are  three  primary types of home  sleep  test monitors used  for 

sleep  apnea: Type  II, Type  III, and  Type  IV. Each  of these  monitors 

measures a  different number of channels to  measure  different types of 

signals (ranging  from 7  channels on  Type  II to  1  or 2  channels on  Type 

IV) [11]. A patent for a  Type  III monitor invented  by Bowers and 

Kienle  describes one  of these  devices that includes an  SaO2 sensor, 

a  breathing  sensor, a  snorting  sensor, and  a  head  position  sensor [12]. A typical  monitor setup 

can  be  seen  in  Figure  4. Some  sleep  apnea  monitors, such  as the  one  previously described, do 

not provide  a  method  of sleep  apnea  detection, and  require  manual  scoring  of results. Others, 

such  as one  designed  by Bsoul  et al. are  capable  of detecting  sleep  apnea  in  real  time  by 

extracting  features from ECG data  and  using  a  support vector machine  to  make  a  determination 

of whether the  patient is experiencing  sleep  apnea  [13]. Similar devices have  been  used  in  an 

attempt to  reduce  the  frequency of sudden  infant death  (SID) during  sleep. A device  designed 

by Kim in  1996  describes the  use  of pulse  oximetry and  video  monitoring  to  determine  when  to 

set off an  alarm that alerts parents that their child  is at risk for SID [14].  
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5.0  Design Specifications 
 

Because  the  market for a  seizure  detection  device  consists of epileptic individuals, it is 

crucial  to  consider the  parameters of such  a  device  that these  patients deem most important. A 

study performed  by Shulze-Bonhage  et al. determined  what these  parameters were.  Most 

patients preferred  to  be  alerted  by an  acoustic warning, as opposed  to  a  visual  warning  or a 

warning  via  text message. Furthermore, the  majority of patients surveyed  in  the  study preferred 

to  be  alerted  to  a  seizure  less than  one  hour before  it occurred. If the  prediction  window were 

any longer than  this, patients would  feel  heightened  anxiety due  to  anticipation  of the  impending 

seizure. The  patients’  primary concern  with  such  a  device  was its sensitivity—that is, how 

readily it could  detect a  seizure  and  alert the  patient. Additionally, the  importance  of the  device’s 

specificity was considered  by most patients to  be  secondary to  its sensitivity [15]. These 

specifications are  outlined  in  Tables 1  and  2, in  addition  to  others deemed  relevant by the 

authors of this preliminary report.  

 

Table  1: Sensor  Specifications 

Specification Unit Value Description 

Safety Unitless Unitless 
Device  should  be  safe  to  wear during  sleep. It 
should  not contain  sharp  edges or cords that 
can  tangle, and  should  be  properly insulated 

Comfort Unitless Unitless 
Device  should  not prevent the  user from 
sleeping  comfortably 

Size cm cm 
Device  size  should  not hinder the  patient’s 
ability to  sleep  and  should  be  large  enough  to 
be  able  to  collect the  relevant data 

Weight g g 
Device  weight should  not hinder the  patient’s 
ability to  sleep 

Operating  time Hours 12  Hours 
Device  should  be  operational  throughout the 
night 
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Table  1: Sensor  Specifications  (continued) 

Specification Unit Value Description 

Consumer Cost $ $1,000 
Device  consumer cost is predicted  by client to 
be  of similar cost to  current AED devices 

Production  Cost $ $300 
Device  production  cost is estimated  to  be  ⅓ of 
the  consumer cost 

Transmission unitless unitless 
Device  should  transmit signals wirelessly to  the 
receiver 

Software  Platform unitless unitless 
Device  should  be  able  to  collect the  necessary 
data  and  send  them to  the  receiver 

 
 

Table  2: Receiver  Specifications 

Specification Unit Value Description 

Software  platform Unitless Unitless 
Device  software  should  process data  with 
minimal  delay, predict an  impending  seizure, 
and  send  an  alert to  the  patient and  EMS 

Prediction  Interval Min 5-60  min 
Device  should  be  able  to  alert the  patient of 
impending  seizure 5  to  60  min  prior to  onset 

Prediction  Alert Unitless Unitless 
Device  should  acoustically alert the  patient 
when  an  impending  seizure  is predicted 

Detection  Alert Unitless Unitless 
Device  should  alert emergency services when 
an  active  seizure  is detected 

Reliability 
(Repeatability) Unitless 0.9 

Consistency in  measurements taken  by the 
device  across multiple  trials 

Sensitivity % 90% 
Device  should  accurately predict an  impending 
seizure  within  a  certain  percentage 

Range m 20  m 
Device  should  be  able  to  receive  signals from 
the  sensor within  20  meters 

Security % 100% 
Data  collected  will  only be  accessible  to  the  user 
and  to  emergency services 

 
6.0  Preliminary  Design Schedule 
 
See  Appendix A for the  preliminary design  schedule. 
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7.0  Team Responsibilities 
 

Table  3: Team  Responsibilities 

Responsibility Jack Lin Josh  Olick-Gibson Nikhil  Patel 

Written  Reports x x x 

Weekly Reports x x x 

Website x   

Software  Development   x 

Hardware  Development x x  

Preliminary Presentation   x 

Progress Presentation x   

V&V Presentation  x  

Poster x x x 

Final  Presentation x x x 

 
 
8.0  Conclusion 
 

There  is a  need  to  alert high  risk epileptic individuals to  an  impending  seizure. Over the 

past twenty years, the  scientific and  medical  community has performed  a  substantial  amount of 

research  on  seizure  detection  methods, ranging  from EEG and  ECoG to  seizure  alert dogs. 

Many potential  solutions have  emerged  from this research, but not without limitations. The 

existing  solutions to  this problem primarily suffer from high  false  alarm rates, inaccessibility to 

the  patient during  sleep, and  lack of real-time  seizure  prediction. This project aims to  meet the 

need  for a  device  that will  address these  limitations. 
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Appendix B: Existing Device Solutions

Company Brand name Device type Article published Available on market Signal processing Website

ActiGraph wGT3X, wActiSleep, GT3X, ActiSleep Watch activity monitor No Yes Triaxis, solid state accelerometer 
ambient light photodiode http://www.actigraphcorp.com

Advanced Brain Monitoring X series - EEG wireless monitoring EEG headsets with 4 (x4), 10 (x10), 
or 24 (x24) channels No Yes Wireless EEG http://advancedbrainmonitoring.com

Affectiva Wristband Poh et al. and Fletcher et al. Temporally interrupted Electrodermal activity, triaxis 
accelerometer and body temperature www.affectiva.com

Air Brain System/Kwansei 
Gakuin University Air Brain System Portable EEG telemetry system 

using 3G network with a smartphone Honda et al. No 3G, Wi-Fi connection to smartphone http://eudl.eu/doi/10.4108/icst.bodynets.2013.253918

Alert-It Ep-It Companion Monitor (S1029) Bed motion monitor (accelerometer 
under mattress) No Yes

Wireless to radio transmitter wired to 
nurse call, telephone dialer, or remote 
bell

http://www.alert-it.co.uk

Ep-It Guardian Monitor (P139) Bed motion monitor (accelerometer 
under mattress) No Yes Wireless to radio transmitter wired to nurse call, telephone dialer, or remote bell

Badge-it Panic button No Yes Wireless to radio transmitter wired to nurse call, telephone dialer, or remote bell

Ashametrics Company Wrist LifeBand, Ankle LifeBand, Chest 
LifeBand

Wristband, ankleband, and 
chestband Rajan et al. and Fletcher et al. Yes Skin conductance, three-axis accelerometer, ambient temperature sensor, real-time clock with quartz crystal 

precision and autosync with phone; chestband (+ECG heart monitor)
BioLert EpiLert Watch-like sensor system Kramer et al. Yes Wireless transmission http://www.biolertsys.com

Baby Ping Baby Ping Baby monitor - video, audio, and 
night-vision camera No Yes 3G, 4G, Wi-Fi connection www.babyping.com

The Bhutan Epilepsy 
Project/Grand Challenges 
Canada

2014 The Bhutan Epilepsy Project Portable EEG telemetry system 
using 3G network with a smartphone Hodson, Scholey, and Yang No 3G, Wi-Fi connection to smartphone http://www.bhutanbrain.com

Capture Proof Capture Proof HIPAA compliant platform to share 
medical videos No Yes Wireless transmission www.captureproof.com

Cyberonics Inc. Aspire Cardiac abnormalities during 
epileptic seizures No No System linked to VNS system (closed-

loop) http://clinicaltrials.gov/ct2/show/NCT01325623

Danish Care ApS Epi-Care Free Device Wristband - accelerometer Beniczky et al. Yes Wireless transmission - pager and 
mobile phone http://danishcare.dk/uk

Epi-Care 3000 Bed motion monitor (accelerometer 
under mattress) No Yes Wireless call - SMS message, pager, or 

emergency phone

D.C.T. Associates Pty Ltd. Vigil-Aide
Vibration motion (on bed or in 
pouch/belt): audible, vibratory, or 
visual (flashing lights)

No Yes Radio transmission by coded signal http://www.dctassociates. com.au/convul.htm

Movisens Electrodermal activity sensor Electrodes (palm, sole of foot, and 
finger) No Yes

Raw signals of electrodermal activity, 3-
axis acceleration, air pressure, and 
temperature

http://www.movisens.com

Emfit Emfit Seizure Monitor Bed motion sensor (accelerometer 
under mattress) Narechania et al. Yes Wireless transmission http://www.emfit.com

Empatica [66] E3 Wristband Wristband and free mobile phone 
application No Yes

Photoplethysmography, electrodermal 
activity, triaxis accelerometer, body 
temperature, and heat flux

https://www.empatica.com

EpDetect EpDetect Free mobile phone application 
(accelerometer) No Yes

Wireless transmission - SMS 
messaging, movement detection, and 
GPS system

http://www.epdetect.com

EpiCall Ltd. EpiCall
Sticker placed on the side of the 
face with electrooculograph and 
photoplethysmograph electrodes

No No Monitoring seizure biomarkers (heart 
rate and extraocular eye movements) http://clinicaltrials.gov/ct2/show/NCT01436695

Garmin Garmin Forerunner 310X Watch No Yes Heart rate monitor http://www.heartratemonitors.com

Holst Centre/IMEC, Hobo 
Heeze BV Armband with chest electrodes Massé et al. and van Elmpt et al. No

Prototypes using 
electroencephalogram, 
electrocardiogram, and accelerometer

http://www.hoboheeze.nl/engels/episode.html

IctalCare A/S IctalCare 365 Body-worn "ePatch" attached to the 
upper arm Conradsen et al. No Wireless surface electromyography 

(sEMG) http://ictalcare.com/

Medpage MP5
Bed motion sensor and vocalization 
microphone (accelerometer under 
mattress and microphone)

Fulton et al. and Carlson et al. Yes Wireless transmission - radio pager http://www.medpageusa.com

MP2 Bed motion sensor (accelerometer 
under mattress) No Yes Wireless transmission - a radio alarm pager and/ or a desktop alarm receiver

ST2
Bed motion sensor and breathing 
cessation monitor (accelerometer 
under mattress)

Fulton et al. Yes Wireless transmission - radio pager

Mio Alpha Mio Alpha Strapless Watch No Yes Heart rate monitor http://www.alphaheartrate.com

Sensorium Sensealert-102/EP200 Bed motion sensor (accelerometer 
under mattress) No Yes Digital microprocessor - radio 

transmission http://www.sensorium.co.uk

Sparkfun ADLX330 Wristband Bayly et al. Yes Triple axis accelerometer https://www.sparkfun.com



Appendix B: Existing Device Solutions

Company Brand name Device type Article published Available on market Signal processing Website
Smart Monitor Corp. SmartWatch Wristwatch Lockman et al. Yes Android application - Bluetooth signal http://www.smart-monitor.com
Polar H1, H2, H7 Body strap No Yes Heart rate monitor http://www.polar.com

FT1, FT2, FT60, FT80, FT40, FT7 Watch No Yes Heart rate monitor

Shilene.com Seizure Alert and Recorder Free mobile phone application 
(accelerometer under development) No No

Wireless transmission - SMS 
messaging, movement detection, and 
GPS system

http://shilene.com/

Suunto M5, Suunto Quest Watch No Yes Heart rate monitor www.suunto.com
Timex Timex Heart Rate Monitor Watch No Yes Heart rate monitor www.timex.com

Vahlkamp Epi-Watcher Bed motion sensor (accelerometer 
under mattress) No Yes

Wireless (radio waves) alarm bell and 
wired version integrated. Transmit 
spoken message to preprogrammed 
numbers

http://www.vahlkamp.nl/Epi-Watcher_gb.html



Appendix C: Existing Research Solutions - Detection

Author, year Measuring Device Detection algorithm Results
Electroencephalography/
electrocorticography
Webber, 1996 EEG (24-40 channels) ANN classification system SEN of 76% and FPR of 1 event/h

Pradhan, 1996 EEG (8 channels) Wavelet transformation feature acquisition, ANN 
classification SEN of 97% and SPEC of 89.5%

Gabor, 1998 EEG (8 channels) Self-organizing neural network with unsupervised training SEN of 92.8% and FPR of 1.35 events/h

Petrosian, 2000 EEG (32 channels), Intracranial EEG Recurrent Neural Networks (RNN) combined with wavelet 
processing

Detected preictal stages iwthin minutes of 
seizure onset

Wilson, 2004 EEG (8-32 channels) Combined algorithm (utilizes matching pursuit, small neural 
networks, and clustering algorithm) SEN of 76% and FPR of 0.11 events/h

Wilson, 2005 EEG (single channel selected) Used a trained probabilistic neural network for rapid 
detection of seizures SEN of 89% and FPR of 0.56 events/h

Alkan, 2005 EEG (4 channels) Comparison of linear regression systems and ANN 
classification systems

ANN-based systems found to be greater. 
ANN-based system provided greater 
accuracy compared with linear regression

D'Alessandro, 2005 [6] Intracranial EEG Genetic algorithm for signal processing, probabilistic neural 
network for classification

100% prediction of seizures within 10 min 
prior to onset

Arabi, 2006 EEG
Used linear correlation feature selection methods and back 
propagation neural network for classification. Used in 
detection of neonatal seizures

SEN of 91% and FPR of 1.17 events/h

Casson, 2007 Ambulatory EEG Continuous wavelet transform Over 90% of spike detection
Chan, 2008 Intracranial EEG SVM system SEN of 80-98%, FPR of 38%
Netoff, 2009 EEG (6 channels) Cost-sensitive SVM system SEN of 77.8%, no false positives detected

Chua, 2009 EEG Data processing by higher-order spectra analysis followed by 
classification by the Gaussian mixture model or SVM Accuracy of 92-93%

Mirowski, 2009 EEG Variable feature extraction methods used followed by 
patient-specific machine learning-based classifiers

Convolutional networks combined with 
wavelet coherence yielded sensitivity of 
71% and no false positives

Sorensen, 2010 EEG (3 channels) Features classified by matching pursuit algorithm and 
classified by SVM

SEN of 78-100 and FPR of 0.16-5.31 
events/h

Chisci, 2010 EEG (multichannel) Least-squares parameter estimator for extraction followed by 
SVM classification SEN of 100%

Peterson, 2011 EEG (single channel) Wavelet transform followed by SVM classification used to 
detect absence seizures using single-channel EEG SEN of 99.1% and PPV of 94.8%

Temko, 2011 EEG (8 bipolar) Fast Fourier transform used for feature extraction followed by 
SVM classification. Used to detect neonatal seizures

SEN adjustable, with 89% SEN yielding 
one false detection/h

Acharya, 2011 EEG Higher-order spectra-based feature extraction followed by 
SVM Detection accuracy of 98.5%

Kharbouch, 2011 Intracranial EEG Multistep feature extraction system followed by SVM 
classifier, individualized for patients

Detected 97% of seizures, FPR of 0.6 
events/day
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Author, year Measuring Device Detection algorithm Results

Liu, 2012 Intracranial EEG Wavelet decomposition-based feature extraction followed by 
SVM classification SEN of 94.5% and SPEC of 95.3%

Xie, 2012 EEG (6 channels) Feature extraction by wavelet-based sparse functional linear 
model and 1-NN classification method Has 99-100% classification accuracy

Direito, 2012 EEG (multichannel) Markov modeling classification system. Identified four states 
- preictal, ictal, postictal, and interictal Point-by-point accuracy of 89.3%

Rabbi, 2012 Intracranial EEG Used fuzzy algorithms for feature extraction for classification SEN of 95.8% and FPR of 0.26 events/h

Implanted advisory system

Cook, 2013 Intracranial implanted device Cluster computing system at NeuroVista (one algorithm for each 
patient) SEN of 65%-100%

Electromyography

Conradsen, 2010 Electromyography
Features extracted from surface electromyography acceleration 
and angular velocity/seizure-like movements performed by 
healthy volunteers

SEN of 91-100% and SPEC of 100%

Conradsen, 2012 Electromyography and motion sensor 
features

Discrete wavelet transformation/wavelet packet transform 
techniques used to extract features. SVM classification system

Evaluated healthy subjects simulating 
seizures. SEN of 91-100% and SPEC of 100%

Electrocardiogram

Greene, 2007 ECG Processing of 41 heart timing variables SEN of 62.2% and SPEC of 71.8%

Malarvili, 2009 ECG Utilizes heart rate from ECG and classifies using statistical 
methods seizures from nonseizure events SEN of 85.7% and SPEC of 84.6%

Jeppesen, 2010 ECG Time-frequency features from ECG extracted followed by 
wrapperbased feature selection technique.

Reciprocal power peaks from 10 s preictal to 
24 s postictal were 2.96-93.63 times higher 
than in control

Doyle, 2010 ECG SVM-based classifier using features extracted from heart rate 
variability SEN of 60% and SPEC of 60%

Accelerometry

Nijsen, 2005
3-D accelerometers used on both legs 
and arms and on the chest/myoclonic, 
tonic, tonic-clonic, startle, SPS, CPS

Typical seizure patterns were noted in 95% of motor seizures

Nijsen, 2007
3-D accelerometers used on both legs 
and arms and on the chest/myoclonic, 
clonic, and tonic seizures

SPEC of 100% and PPV of 52-93%
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Author, year Measuring Device Detection algorithm Results

Cuppens, 2009
3-D accelerometers on wrists and 
ankles/frontal lobe seizures with motor 
manifestations

SEN of 91.7% and SPEC of 83.9%

Nijsen, 2010 3-D accelerometers and video-EEG used 
on both legs and arms and on the chest

Short-time Fourier transform, Wigner distribution, continuous 
wavelet transform, and model-based matched wavelet transform

Short-time Fourier transform: SEN of 71% and 
PPV of 16%. Using Wigner distribution: SEN of 
34% and PPV of 15%. Using continuous 
wavelet transform: SEN of 80% and PPV of 
16%. Using model-based matched wavelet 
transform: SEN of 80% and PPV of 15%

Lockman, 2011 Single 3-D accelerometer worn on the 
wrist Pattern recognition algorithm detects seizure events Detects tonic-clonic seizures. SEN of 87.5%. 

204 false positives

Kramer, 2011 Single 3-D accelerometer worn on the 
wrist Time domain- and frequency domain-based algorithm Identified 91% of clonic or tonic, tonic-clonic, 

or secondarily generalized seizures

Van de Vel, 2012 One 3-D accelerometer on each limb Movement detection system followed by feature extraction SEN of 96% and PPV of 58%

Dalton, 2012 Accelerometer-based kinematic sensor Motor patterns of epileptic seizures SEN of 91% and SPEC of 84%

Beniczky, 2013 Single 3-D accelerometer worn on the 
wrist Time domain- and frequency domain-based algorithm SEN of 91% and FPR of 0.2 events/day

Video detection systems

Karayinnis, 2004 Video segments of seizures Neural network model SEN N 90%, SPEC N 95%

Cuppens, 2010 Epilepsy monitoring unit-derived video 
segments Optical flow algorithm Detection of seizures from video recordings 

using trial in pediatric nighttime seizures

Cuppens, 2012 Nocturnal video Spatiotemporal interest points SEN of 75% and PPV of 85%

Lu, 2013 Quantify limb movements Gaussian mixture models Performance compared with EEG

Mattress sensor

Carlson, 2009 Microphone under mattress Activated by tapping noises/bedspring noises. Designed to detect 
nocturnal seizures SEN of 62.5% and SPEC of 90.4%

Narechania, 2011 Quasi-piezoelectric sensor Activated by rhythmic movements
Detected 80% of seizures, 14 false alarms 
occurred during periods of patient 
wakefulness

Audio classification

Bruijne, 2009 Signal enhancement, audio analysis, and 
classification Seizure classification based on temporal and spectral sounds Good performance for sounds during and 

after seizures

Seizure-alert dogs
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Author, year Measuring Device Detection algorithm Results

Strong, 1999 Trained dog Anecdotal evidence of seizure giving warnings from 15 to 45 min 
prior to seizure onset N/A



Appendix D: Existing Research Solutions - Prediction

Author, year Measuring Device Detection algorithm Results

Litt, 2001 [61] Intracranial EEG (3-14 days, 
continuous)

Visual review of epileptologists to identify the earliest EEG 
change associated with seizures and the the unequivocal 
EEG onset of seizures

Able to detect signals of seizures several 
hours (~7) before the seizure actually 
occurs (however this identification 
occurred after the fact)

Li, 2007 Rat EEG
Threshold for the permutation or sample entropy (decrease 
in the entropy/less stability in entropy indicates an impending 
seizure state)

Mean anticipation time for permutation = 
4.9s (with 54% pre-ictal detection) and for 
sample = 3.7s (with 21% pre-ictal 
detection)

Van Drongelen, 2003 Surface EEG (2 patients) and 
Intracranial EEG (3 patients) Time series analysis using Kolmogorov entropy

Anticipation times between 2 and 40 
minutes; As effective as the more 
commonly used correlation dimension in 
anticipating seizures

Bruioka, 2005 EEG (no further information) Evaluated approximate entropy (ApEn) in EEG and found it 
was significantly decreased during epileptic seizures

Unlear if this was used for prediction, I 
couldn't get access to the full paper

Chua, 2009 EEG (128 channel)
Exploit higher order spectra (bicoherence patterns and 
bispectra entropies) using Fourier transforms to extract 
features used to train a classifier

Identified features that are specific to the 
pre-ictal EEG using the bispectrum 
magnitude plot and the bicoherence plot

D'Alessandro, 2005 [6] Intracranial EEG

Train a neural network classifier to predict on a 10 minute 
prediction horizon using a set of seizure data and test on the 
remaining data. The classifier continues to train and learn 
over time

Sensitivity of 100% and 1.1 False 
positives/hour, Able to predict about 6.5-8 
minutes before seizure onset

Netoff, 2009 Intracranial EEG
Training using oartial pre-ictal data from the 5 minute interval 
before seizure onset from 45 seizures on a support vector 
machine classifier and then testing on the remaining data

Sensitivity of 77.8% with no false positives

Cook, 2013 [22] Intracranial EEG

After implantation, at least 1 month of data was collected in 
order to develop a personalized algorithm for the patient; 
after that, a handheld device indicated low, medium, or high 
likelihood of seizure

Sensitivities of 65-100% in 11 patients 
(using real time seizure prediction)

Teixeira, 2011 [53] EEG and ECG
Collection of over 35 time/frequency domain features based 
on univariate and multivariate analysis that are used to 
construct classifiers of various types

High sensitivity and low false positive rate 
(varies depending on the predictor that is 
used)

Yuan, 2017 Intracranial EEG

Used diffusion distance (DD) from iEEG recordings. DD 
extracted from wavelet decomposition of EEG signals, fed 
this into a Bayesian Linear Discriminant Analysis (BLDA) 
classifier. 

Sensitivity of 85.11% for seizure 
occurrence period of 30 min, sensitivity of 
93.62% for a seizure occurence period of 
50 min, both with seizure prediction 
horizon of 10 sec. False prediction rate 
0.08/h

Karoly, 2017 ECoG

Compared results of an electrocorticography-based logistic 
regression model, a circadian probability, and a combined 
electrocorticography and circadian model. Used to calculate 
the probability of a seizure in a given time

Prediction sensitivity ranged from 45% to 
76%
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Author, year Measuring Device Detection algorithm Results

Hasan, 2017 EEG

Extracted features including approximate entropy (ApEn), 
standard deviation (SD), standard error (SE), modified mean 
absolute value (MMAV), roll-off (R), and zero crossing (ZC). 
Used the k-nearest neibours (k-NN) algorithm for the 
classification of epilepsy, then used regression analysis to 
predict the epilepsy level.

Obtained up to 60% classification 
accuracy

Yang, 2016 Anterior thalamic signals (EEG) Generic Osorio-Frei algorithim (GOFA)
In temporal lobe epileptic rats, ANT LFP is
 feasible to predict seizures with minimal 
false-positives and no false-negatives
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